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Abstract
We present a new calculation of the radiation force on a cylinder in a standing
wave acoustic field. We use the formula to calculate the force on a cylinder
which is free to move in the field and one which is fixed in space.

PACS numbers: 43.25.+y, 43.35.+d, 62.60.+v

1. Introduction

The radiation force is the time-averaged force exerted on an object in a sound field. It is
a nonlinear effect due to momentum/energy transfer from the harmonic wave to the object
[1–6]. Some publications refer to the force on an object as radiation pressure; however, this
‘pressure’ is a vector quantity and usually integrated over the surface area of the object, so we
will use radiation force.

When an object is placed in a standing wave acoustic field a series of four maxima and
minima in the force are created, which cause free objects to be driven to one of the minima. The
specific minima (pressure anti-node or velocity anti-node) are determined by the density and
compressibility of the object relative to the fluid [4, 7]. The radiation force can be generated
by a non-zero time-averaged pressure [8], drag due to acoustic streaming [8], the Reynolds
stresses due to the deformation of the surface of the object [8], and a contribution due to the
dynamics of an object in the acoustic field [9].

In this paper, as is the common practice, we consider the case where the dimensions of
the object are much greater than the acoustic boundary layer thickness. Here the fluid can
be assumed to be inviscid and the effects of streaming are neglected [8, 10]. King was one
of the first to analyse the radiation force [4]. He published a landmark paper describing the
radiation force on a sphere due to wave propagation in an inviscid fluid. He derived a formula
for the second-order pressure and calculated the radiation force due to a standing wave and a
travelling wave. Most studies presented have only considered spherical objects, but there have
been a few investigations into the radiation force on a cylinder. These considered an inviscid

0305-4470/05/153279+07$30.00 © 2005 IOP Publishing Ltd Printed in the UK 3279

http://dx.doi.org/10.1088/0305-4470/38/15/004
http://stacks.iop.org/ja/38/3279


3280 D Haydock

fluid where the cylinder is free to move in the acoustic field. Awatani was probably the first
to calculate the radiation force on a cylinder in 1954 [11]. He presented calculations for the
variation in the force on a rigid cylinder due to a travelling wave field. He also claimed to
have calculated the radiation force for a standing wave but on inspection the wave propagates
in the x-direction and therefore is in fact not a standing wave. In 1988 and 1993 Hasegawa
et al [12, 13] published calculations for elastic cylinder spherical shells and cylindrical shells
in a travelling wave field. They did not consider a standing wave acoustic field. In 1990
Wu et al also produced an analytical study which was compared to experimental results [14].
They found an agreement to within 20%. However, their calculation was for two incident
waves rather than an incident and scattered wave. They do not consider the variation of the
wave amplitude over the surface of the cylinder so only solve the boundary conditions on
the x-axis for a cylinder of radius r = 0, and the wave is assumed to be symmetric about the
centre of the object. When this method is compared with more complete solutions the errors
can be significant. Edenezer and Stepanishen presented two papers using numerical solutions
to the radiation force for a cylinder that is vibrating at an arbitrary number of natural frequencies
[15, 16]. They considered the flutter produced by a steady flow field but did not consider an
acoustic field incident on the cylinder. None of these studies satisfactorily analyses the case
of a cylinder in a standing wave field.

Here we present a new calculation of the radiation force for a rigid cylinder that is free to
move in the acoustic field in an inviscid fluid. The radiation force for a cylinder fixed in space
can also be calculated by setting the particle velocity vp = 0. In a further paper and a D Phil
thesis [17, 18] we will use these calculations to show that lattice Boltzmann simulations can
model the radiation force. We now describe the calculation of the radiation force on a cylinder.
In section 3 we present an example calculation, then in section 4 we present our conclusions.

2. Calculation of the radiation force on a rigid cylinder in an inviscid fluid

We assume that the acoustic field does not deform the object and the acoustic boundary layer
thickness β−1 = √

2ν/ω � a where ν is the kinematic viscosity, ω is the angular frequency,
and a is the radius of the cylinder. Under these conditions the fluid can be treated as inviscid
[10] and the radiation force is given by the time average of the pressure on the surface of the
object [4]

Fα = −
∫∫
© 〈P 〉n̂α dA (1)

where the pressure P is calculated on the surface of the particle A. For a fixed particle [4, 19]

P − P0 = P ′ = −ρ0ϕ̇ +
1

2

ρ0

c2
ϕ̇2 − 1

2
ρ0u

2 (2)

where u = ∇ϕ is the velocity of the fluid, ϕ is the velocity potential for compressible
irrotational flow, ρ0 is the undisturbed density of the fluid, P0 is the undisturbed pressure and
c is the speed of sound in the fluid. If the particle is free to move due to the action of the wave
we need to transform (2) into the Lagrangian reference frame. To do this the first term of (2)
is transformed as follows [4]

ϕ̇ = Dtϕ − ξ̇ ∂xϕ − η̇∂yϕ − ζ̇ ∂zϕ = Dtϕ − ξ̇ux − η̇uy − ζ̇ uz (3)

where ξ̇ , η̇, ζ̇ are the transformation velocities of the particle and co-ordinate system, and

〈Dtϕ〉 = 0. (4)
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We can now consider the radiation force as being the sum of the contributions from the time-
average potential energy 〈Pφ〉, kinetic energy 〈Pq〉 and a contribution due to the motion of the
particle 〈Pζ 〉 [9]

Fx = 〈Pφ〉 + 〈Pq〉 + 〈Pζ 〉. (5)

The motion of the particle vp = (ξ̇ , η̇, ζ̇ ) is found from the acceleration due to first-order
contribution of the pressure field on its surface [4, 11] which after integrating with respect to
time gives

mvp =
∫∫
© ρ0ϕn̂ dA (6)

where m is the mass of the particle. The motion of the particle will influence the acoustic field
so it must be incorporated as a boundary condition when determining the scattered velocity
potential.

For a standing wave propagating in the x-direction the motion of an infinitely long cylinder
is given by

vpx = ρ0

ρ1

1

πa

∫ 2π

0
ϕ cos θ dθ = ξ̇ = Re [vpf x eiωt ]. (7)

where vpfx is the time-independent velocity of the cylinder and ρ1 is its density.
For a standing wave in the cylindrical co-ordinates with the origin at the centre of the

cylinder the time-independent incident and scattered velocity potentials are given by

ϕf i = V ′
0 cos ψ (8)

ϕf s =
∞∑
0

H(2)
n (kr)[A′

n cos(nθ) + B ′
n sin(nθ)] (9)

where ψ = k(r cos θ + h), h is the distance in the x-direction from the source of the acoustic
wave to the centre of the cylinder, V ′

0 = V0/k, V0 is the velocity amplitude at the source, k
is the wave vector (k = ω/c), ϕf i and ϕf s are the time-independent incident and scattered
velocity potentials respectively, H(1)

n (kr) and H(2)
n (kr) are nth-order Hankel functions of

the first and second kind respectively [20], and A′
n and B ′

n are constants which are defined
from the boundary conditions on the surface of the cylinder. The total velocity potential is
ϕ = Re [ϕf eiωt ] = Re [(ϕf i + ϕf s) eiωt ].

To perform the required integrals to solve for the radiation force we use power series
expansions of cos ψ and sin ψ

cos ψ ≈ 1 − ψ2

2!
+

ψ4

4!
− ψ6

6!
+

ψ8

8!
− · · · (10)

sin ψ ≈ ψ − ψ3

3!
+

ψ5

5!
− ψ7

7!
+ · · · . (11)

For our studies we consider maximum ψ ∼ 0.75π which allows us to discard higher order
terms than ψ8/8! as (0.75π)8 � 8!. We also work in the limit ka � kh and are only interested
in solutions to ϕ for r ≈ a which allows us to only consider terms up to O((kr)2).

Using the boundary condition uf r = vpf x cos θ at r = a, and taking a Fourier transform
of (8) after substituting (10) we obtain the time-independent velocity potential

ϕf = V ′
0

[
(Ar + Br cos θ + Cr cos2 θ) +

Ea

2

H
(2)
0 (kr)

H
(2)′
0 (ka)

+

(
Da +

3

4
Fa +

vpf x

V ′
0k

)
H

(2)
1 (kr)

H
(2)′
1 (ka)

cos θ +
Ea

2

H
(2)
2 (kr)

H
(2)′
2 (ka)

cos(2θ)

]
(12)
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ϕ = Re [ϕf eiωt ] (13)

where

Ar = 1 − (kh)2

2!
+

(kh)4

4!
− (kh)6

6!
+

(kh)8

8!
,

Br = −(kh)(kr) +
(kh)3(kr)

3!
− (kh)5(kr)

5!
− (kh)7(kr)

7!
,

Cr = − (kr)2

2!
+

6(kh)2(kr)2

4!
− 15(kh)4(kr)2

6!
+

28(kh)6(kr)2

8!
,

Da = kh − (kh)3

3!
+

(kh)5

5!
− (kh)7

7!
,

Ea = ka − (kh)2(ka)

2!
+

(kh)4(ka)

4!
− (kh)6(ka)

6!
,

Fa = − (kh)(ka)2

2!
+

2(kh)3(ka)2

4!
− 23(kh)5(ka)2

6!
,

and we define Aa, Ba, and Ca as the values of the constants at r = a and

H(2)′
n (kr) = ∂krH

(2)
n (kr).

We now substitute (12) into (7) to find the particle velocity. After substitution and integration
we find that

vpf x = V ′
0

Ba +
(
Da + 3Fa

4

) H
(2)
1 (ka)

H
(2)′
1 (ka)

ρ1a

ρ0
− 1

k

H
(2)
1 (ka)

H
(2)′
1 (ka)

. (14)

We now find the radiation force from a surface integral of the time-averaged surface
contributions of the potential energy, kinetic energy and the contribution due to the motion of
the particle.

The contribution due to the time-averaged potential energy
(〈V 〉 = 〈

1
2ρ0ϕ̇

2/c2
〉)

is given
by [4] as

〈Pφ〉 = −aρ0

2c2

∫ 2π

0
〈ϕ̇2〉 cos θ dθ. (15)

Inserting (13) into (15) performing the required differentiation and using the relationship

〈Re [f (x) eiωt ] Re [g(x) eiωt ]〉 = 1
2 Re [f (x)g(x)∗]. (16)

where g(x)∗ is the complex conjugate of g(x), and noting that H(2)
n (kr)∗ = H(1)

n (kr) and
H(2)′

n (kr)∗ = H(1)′
n (kr) we find that

〈Pφ〉 = −πaρ0(V
′

0ω)2

4c2
0

Re [f1(kr)] (17)

f1(ka) =
(

2AaBa +
3

2
BaCa

)
+

BaEa

2

H
(1)
0 (ka)

H
(1)′
0 (ka)

+

(
Aa +

3

4
Ca

)(
Da +

3

4
Fa +

vpf x

V ′
0k

)
H

(1)
1 (ka)

H
(1)′
1 (ka)

+
BaEa

4

H
(1)
2 (ka)

H
(1)′
2 (ka)
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+
BaEa

2

H
(2)
0 (ka)

H
(2)′
0 (ka)

+
Ea

2

(
Da +

3

4
Fa +

vpf x

V ′
0k

)
H

(2)
0 (ka)H

(1)
1 (ka)

H
(2)′
0 (ka)H

(1)′
1 (ka)

+

(
Da +

3

4
Fa +

vpf x

V ′
0k

)(
Aa +

3

4
Ca

)
H

(2)
1 (ka)

H
(2)′
1 (ka)

+
Ea

2

(
Da +

3

4
Fa +

vpf x

V ′
0k

)
H

(2)
1 (ka)H

(1)
0 (ka)

H
(2)′
1 (ka)H

(1)′
0 (ka)

+
Ea

4

(
Da +

3

4
Fa +

vpf x

V ′
0k

)
H

(2)
1 (ka)H

(1)
2 (ka)

H
(2)′
1 (ka)H

(1)′
2 (ka)

+
BaEa

4

H
(2)
2 (ka)

H
(2)′
2 (ka)

+
Ea

4

(
Da +

3

4
Fa +

vpf x

V ′
0k

)
H

(2)
2 (ka)H

(1)
1 (ka)

H
(2)′
2 (ka)H

(1)′
1 (ka)

. (18)

The contribution due to the time-averaged kinetic energy 〈T 〉 = 〈
1
2ρ0u

2
〉

is given by

〈Pq〉 = aρ0

2

∫ 2π

0

〈
u2

1

〉
cos θ dθ (19)

where u1 = u1θ + u1r , u2
1 = u2

1θ + u2
1r substituting into (19) and using the relationship (16)

gives

〈Pq〉 = ρ0

4a
Re

∫ 2π

0
[(∂θϕf )(∂θϕf )∗ + (vpf x)(vpf x)

∗] cos θ dθ. (20)

Noting that (vpf x)(vpf x)
∗ ∫ 2π

0 cos θ dθ = 0 we find

〈Pq〉 = ρ0πV ′
0

8a
Re f3(kr) (21)

f3(kr) = Ca

(
Da +

3

4
Fa +

vpf x

V ′
0k

)[
H

(2)
1 (ka)

H
(2)′
1 (ka)

+
H

(1)
1 (ka)

H
(1)′
1 (ka)

]
+ 2BaCa − CaGa

+

[(
Da +

3

4
Fa +

vpf x

V ′
0k

)
H

(2)
1 (ka)

H
(2)′
1 (ka)

+ Ba − Ga

2

]
EaH

(1)
2 (ka)

H
(1)′
2 (ka)

+

[(
Da +

3

4
Fa +

vpf x

V ′
0k

)
H

(1)
1 (ka)

H
(1)′
1 (ka)

+ Ba − Ga

2

]
EaH

(2)
2 (ka)

H
(2)′
2 (ka)

(22)

where Ga = kaFa .
We must now include the contribution from converting from the Eulerian to the Lagrangian

reference frame due to the motion of the particle in the sound field [4]

〈Pζ 〉 = −ρ0a

∫ 2π

0
〈u · vp〉 cos θ dθ. (23)

Using the relationship (16) and the boundary conditions uf r = vpf x cos θ at the surface of the
cylinder (23) can be rewritten as

〈Pζ 〉 = ρ0a

∫ 2π

0

1

2
Re

[
−(vpf x)(vpf x)

∗ cos2 θ +
vpf x

a
sin θ(∂θϕf )∗

]
cos θ dθ (24)

= −ρ0π

2
Re

[
vpf x

(
Ca + Ea

H
(1)
2 (ka)

H
(1)′
2 (ka)

)]
(25)

and from (5) the total radiation force is given by Fx = 〈Pφ〉 + 〈Pq〉 + 〈Pζ 〉.
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3. Example

We take the fluid properties to be those of air (c = 340 m s−1, ρ0 = 1.2 kg m−3, v = 1.4 ×
10−5) and consider a 1.4 µm radius cylinder in a 2.4 MHz standing wave field of intensity
I = 2.4 kW m−2 (I = 0.24 W cm−2, λ = 0.143 mm, V0 = 3.4 m s−1). We take h = 3λ/8, the
second of the maxima in the radiation force.

First we consider a cylinder fixed in space. Here the velocity of the cylinder vp = vpx =
vpf x = 0. Substituting this into equations (17) and (21) gives 〈Pφ〉 = −1.932 × 10−6N ,
〈Pq〉 = −1.014 × 10−6N and therefore the radiation force Fx = −2.946 × 10−6N .

We now consider a cylinder that is free to move in the fluid. We consider a cylinder
with density ρ1 = 120 kg m−3. At h = 3λ/8 equations (17), (21) and (24) now give
〈Pφ〉 = −1.912 × 10−6N , 〈Pq〉 = −1.004 × 10−6N , 〈Pς 〉 = 1.93 × 10−8N and therefore
the radiation force Fx = −2.896 × 10−6N . As the cylinder is free to move it will have a
time-averaged motion towards h = λ/4.

4. Conclusions

In this paper we have produced a new calculation on the radiation force on a cylinder in an
inviscid fluid where ka � kh and h � 0.335λ. We believe that these calculations are more
accurate than those previously reported and can easily be evaluated using standard numerical
packages such as matlab. We have also presented an example calculation for both a fixed
cylinder unable to move in the acoustic field and a cylinder free to move in the field.
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